1346.6012 IFGC APPENDIX E, WORKSHEET E-1.

IFGC Appendix E, Worksheet E-1

Residential Combustion Air Calculation Method

(for Furnace, Boiler, and/or Water Heater in the Same Space)

Step 1: Complete vented combustion appliance information.

step 1. Complete ver	inca combustion applianc	e information.	
Furnace/Boiler:			
Draft Hood	Fan Assisted	Direct Vent	Input:
(Not fan assisted)	& Power Vent		Btu/hr
Water Heater:			
Draft Hood	Fan Assisted	Direct Vent	Input:
(Not fan assisted)	& Power Vent		Btu/hr
Step 2: Calculate the combustion appliance	he volume of the Combues.	ustion Appliance Space	e (CAS) containing
The CAS includes all by code compliant of	l spaces connected to one penings.		volume:ft ³
Step 3: Determine A	ir Changes per Hour (AC	H) ¹	
	nave been incorporated int r of construction or ACF		`
Step 4: Determine R	equired Volume for Comb	oustion Air.	
4a. Standard Method	I		
	all combustion appliance CT VENT APPLIANCES		Btu/hr
Use Standard Method Required Volume (Tl	d column in Table E-1 to f RV)		ft ³
If CAS Volume (from	n Step 2) <i>is greater than</i> T	`RV then no outdoor op	enings are needed.
If CAS Volume (from	n Step 2) is less than TRV	then go to STEP 5.	

4b. Known Air Infiltration Rate (KAIR) Method

Total Btu/hr input of all fan-assisted vent appliances (DO NOT COUNT APPLIANCES)	•	Input:	Btu/hr
Use Fan-Assisted Appliances columfind Required Volume Fan Assisted	RVFA:		
Total Btu/hr input of all non-fan-ass	Input:	Btu/hr	
Use Non-Fan-Assisted Appliances of to find Required Volume Non-Fan-A		RVNFA:	ft ³
Total Required Volume (TRV) = RV	YFA + RVNFA		
	RV = +	=	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
If CAS Volume (from Step 2) is great	ater than TRV then no	outdoor openings	are needed.
If CAS Volume (from Step 2) is less			
Step 5: Calculate the ratio of available	_		olume.
Ratio = CAS Volume (from Step 2) divided by TRV (from Step 4a or Step 4b)	Ratio =	/=	
Step 6: Calculate Reduction Factor	(RF).		
RF = 1 <i>minus</i> Ratio	RF = 1	=	
Step 7: Calculate single outdoor ope	ening as if all combustion	on air is from outs	side.
Total Btu/hr input of all Combustion same CAS (EXCEPT DIRECT VEN	* *	Input:	Btu/hr
Combustion Air Opening Area (CA Total Btu/hr <i>divided by</i> 3000	OA):		
Btu/hr per in ²			
CAOA =	/3000 Btu/hr	per in ² =	in ²
Step 8: Calculate Minimum CAOA			
Minimum CAOA = CAOA <i>multipli</i>	ied by RF		
•	x	=	in ²
Step 9: Calculate Combustion Air C			

CAOD = 1.13 multiplied by the square root of Minimum CAOA

CAOD = 1.13 Minimum CAOA = in

¹If desired, ACH can be determined using ASHRAE calculation or blower door test. Follow procedures in Section G304.

Statutory Authority: MS s 326B.101; 326B.106; 326B.13

History: 34 SR 537

Published Electronically: October 23, 2009